$\left( { \sim p} \right) \vee \left( {p\, \wedge \sim q} \right)$ =
$p \wedge \left( { \sim q} \right)$
$p \to \sim q$
$q \to p$
$p \vee \left( { \sim q} \right)$
ધારો કે $p$ એ વિધાન $"x$ અસંમેય સંખ્યા છે$"$,
$q$ એ વિધાન $" y$ અબીજીય સંખ્યા છે $",$
અને $r$ એ વિધાન $"x $ સંમેય સંખ્યા છે $y$ અબીજીય સંખ્યા હોય તો$"$
વિધાન $- 1 : r$ એ $q$ અથવા $p$ સાથે સમતુલ્ય છે.
વિધાન $- 2 : r$ એ $(p \Leftrightarrow \sim q)$ સાથે સમતુલ્ય છે.
વિધાન $B \Rightarrow((\sim A ) \vee B )$ એ $............$ને સમકક્ષ છે.
નીચેનામાંથી ક્યું વિધાન સાચું છે?
વિધાન $1$:$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ ફેલેસી છે.
વિધાન $2$:$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow \sim p )$ ટોટોલોજી છે.
‘‘જો સંખ્યાને $15$ વડે ભાગી શકાય તો તેને $5$ અને $3$ વડે પણ ભાગી શકાય’’ આ વિધાનનું નિષેધ